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1. Finite sample analysis of CH-PRFA
In this paper, we prove the following Theorem.
Theorem 1. Let p be a distribution realized by a minimal PRFA of size d, B = (P,S) be a complete and residual basis, we
denote by σd the d-th largest singular values of (pu(v))u∈R. LetD be a training set of words generated by p, we denote by
n the number of time the least occurring prefix of P appears in D (n = minu∈P |{∃v ∈ Σ?|uv ∈ D}|). For all 0 < δ < 1,
there exists a constant K such that, for all t > 0, ε > 0, with probability 1− δ, if

n ≥ K t4d4 |Σ|
ε2σ10

d

log

(
|P|
δ

)
,

CH-PRFA returns a PFA realizing a proper distribution p̂ such that∑
u∈Σ≤t

|p̂(u)− p(u)| ≤ ε.

1.1. Notations

In order to make the proof easier to read, we first define few notations. Let Z be the matrix built by stacking the p>u , where
u ∈ R as follows,

Z = (pu)
>
u∈R .

Similarly, we define the following matrices :

Ẑ = (pu)
>
u∈R̂ ,

Zo = (ȯpu)
>
u∈R ,

Ẑo = (ȯp̂u)
>
u∈R̂ .

In addition, we denote by A, the horizontal concatenation of the Ao for all o ∈ Σ. Thus, we have

A =
(
Ao1

. . . Ao|Σ|
)

.

The proof of Theorem 1 is decomposed in four parts. First, we bound with high probability the maximum error for all
u ∈ P between du and d̂u in norm `2. Here, we use concentration inequalities like in (Hsu et al., 2012). Then, this error is
propagated through the SPA using (Gillis & Vavasis, 2014). This allows bounding the perturbations in Ẑ and Ẑo. Next, we
analyze how solutions of the quadratic programming problems are perturbed using (Lőtstedt, 1983). Finally, perturbations
in the estimated parameters of the PFA are multiplied together in a non-trivial way to finish the proof.
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1.2. Sampling errors

Let beN independent sequences drawn from the target distribution p. These sequences are used to build empirical estimates
d̂u of du for all u in P . The first step consists in bounding with high probability the error εest = maxu∈P

∥∥∥du − d̂u

∥∥∥
2
. We

start by recalling a result in (?)Proposition 19]hsu2012spectral that uses the McDiarmid inequality (McDiarmid, 1989).

For all u ∈ P , let d∞u be an infinite vector such that ∀v ∈ Σ?, d∞u [v] = P (z = v|u) = p(uv)
p(uΣ?) , where z is a random

variable with value in Σ? drawn from pu. Let d̂∞u be an estimator of d∞u built from nu i.i.d. copies of z denoted zi.

Lemma 1. We the previous notations, for all δu > 0 we have

P

(∥∥∥d∞u − d̂∞u

∥∥∥
2
≥ 1
√
nu

(
1 +

√
log

(
1

δu

)))
≤ δu.

In the sequel, we note n = minu∈P nu. In particular, nε = N .

Proposition 1. With the previous notation, for all δ ∈ [0, 1] we have

P

(
εest ≤ 1√

n

(
1 +

√
log

(
|P|
δ

)))
≥ 1− δ.

Before proving Proposition 1, we make few remarks. As du stands for a conditional distribution, the bound on εest depends
necessarily on n. In addition, the bound depends on log (|P|). We could obtain a bound independent of the dimension (|P|)
using (Denis et al., 2014) but the bound would be much more complicated. So, we kept a dimension dependent results.

Proof. By Lemma 1, we have

P

(
max
u∈P

∥∥∥d∞u − d̂∞u

∥∥∥
2
≤ 1√

n

(
1 +

√
log

(
|P|
δ

)))

= 1− P

(
∃u ∈ P,

∥∥∥d∞u − d̂∞u

∥∥∥
2
≥ 1√

n

(
1 +

√
log

(
|P|
δ

)))

≥ 1−
∑
u∈P

P

(∥∥∥d∞u − d̂∞u

∥∥∥
2
≥ 1√

n

(
1 +

√
log

(
|P|
δ

)))

≥ 1−
∑
u∈P

P

(∥∥∥d∞u − d̂∞u

∥∥∥
2
≥ 1
√
nu

(
1 +

√
log

(
|P|
δ

)))

≥ 1−
∑
u∈P

δ

|P|
= 1− δ.

Next, by the definition of the norm `2, we have
∥∥∥du − d̂u

∥∥∥
2
≤ 2
∥∥∥d∞u − d̂∞u

∥∥∥
2

because some coordinate of d∞u − d̂∞u can

appear twice in du − d̂u. Finally, taking the maximum on u ∈ P leads to the result.

1.3. Perturbations in the convex hull

In this Section, we focus on how estimation errors perturb the identification of the convex hull. The analysis mainly use
the results in (Gillis & Vavasis, 2014) on the robustness of SPA. First, we recall that we assumed rang((du)u∈R) = d as
required by SPA. As the basis is complete, we also have that rang(Z) = d. In addition, σd is the lowest positive singular
value of Z and so of (du)u∈R too. We denote K = maxu∈R ‖du‖2.

As any reordering of R is inconsequential in CH-PRFA, we can assume without loss of generality that the ith element of
R, denoted R(i), correspond to R̂(i). So, for clarity we slightly abuse the notation by denoting with the subscript u, both
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R(i) and R̂(i), even if they differ. For example, maxi∈[1,d]

∥∥∥d̂R̂(i) − dR(i)

∥∥∥
2

becomes maxu∈R̂

∥∥∥d̂u − du

∥∥∥
2
. Similarly,

maxi∈[1,d]

∣∣∣ p̂(R̂(i))

p̂(R̂(i)Σ?)
− p(R(i))

p(R(i)Σ?)

∣∣∣ becomes maxu∈R̂

∣∣∣ p̂(u)
p̂(uΣ?) −

p(u)
p(uΣ?)

∣∣∣. Now, we define the perturbations in the convex

hull to be εconv = maxu∈R̂

∥∥∥d̂u − du

∥∥∥
2
.

Proposition 2. With the previous notations, if εest ≤ σ3
d

648
√
d

then,

εconv ≤ 162
εest

σ2
d

.

Proof. The proof is a direct application of the Theorem 3 in (Gillis & Vavasis, 2014) followed by some simplifications.
This Theorem shows that if

max
u∈P

∥∥∥d̂u − du

∥∥∥
2
< σd min

(
1

2
√
d− 1

,
1

4

)(
1 + 80

K2

σ2
d

)−1

,

then

max
u∈R̂

∥∥∥d̂u − du

∥∥∥
2
< max

u∈P

∥∥∥d̂u − du

∥∥∥
2

(
1 + 80

K2

σ2
d

)
.

First, we have
1

4
√
d
≤ min

(
1

2
√
d− 1

,
1

4

)
.

Next, as du contains probabilities, ‖du‖2 ≤ ‖du‖1 ≤ 1 and so, we have K ≤ 1. Using Lemme 4 in (Gillis & Vavasis,
2014), we also have that σd ≤ K. This gives the following inequality(

1 + 80
K2

σ2
d

)
≤ 1

σ2
d

(
σ2
d + 80K2

)
≤ 81

σ2
d

.

Thus, we can simplify the two bounds as follows,

σd min

(
1

2
√
d− 1

,
1

4

)(
1 + 80

K2

σ2
d

)−1

≥ σd
1

4
√
d

(
1 + 80

K2

σ2
d

)−1

≥ σ3
d

324
√
d

,

and,

max
u∈P

∥∥∥d̂u − du

∥∥∥
2

(
1 + 80

K2

σ2
d

)
≤ 81

maxu∈P

∥∥∥d̂u − du

∥∥∥
2

σ2
d

.

Finally, we conclude using
max
u∈P

∥∥∥d̂u − du

∥∥∥
2
≤ 2εest.

1.4. Perturbations in solutions of the quadratic programming problems

In this Section, we first introduce a general form of the quadratic programming problems involved in CH-PRFA. This form
allows us treating simultaneously all the minimization problems together up to one point. Then, in the next Section we will
focus on each particular problems. The general form we consider is the following

x∗ = argmin
x
‖Qx + q‖2 (1)

s.t.

{
Bx + b ≥ 0,
Cx + c = 0

. (2)

Here, we are interested in bounding ‖x̂∗ − x∗‖2 by a function of
∥∥∥Q̂−Q∥∥∥

2
, ‖q̂− q‖2,

∥∥∥B̂ −B∥∥∥
2
,
∥∥∥b̂− b

∥∥∥
2
,
∥∥∥Ĉ − C∥∥∥

2
,

‖ĉ− c‖2, where x̂∗ is the solution to the perturbed problem.
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Next, we show that the minimization problems in CH-PRFA can be written in the general form of Equation (1). Let
x̂ = α̂0 = (âuε )u∈R̂, then we have

Q̂ = Ẑ>, B̂ = I , Ĉ = 1>,

q̂ = −Ĥ>B 1ε, b̂ = 0, ĉ = −1.

Similarly, for all u ∈ R̂, let x̂u be a vector of size d |Σ| such that

x̂>u =
(
Âo1

[u, :] . . . Âo|Σ| [u, :]
)

= Â[u, :].︸ ︷︷ ︸
d|Σ| columns

then we have,

Q̂ =

 Ẑ> 0 0

0
. . . 0

0 0 Ẑ>

 ,

︸ ︷︷ ︸
d|Σ| columns

q̂>u = −
(
Ẑ1[u, :] . . . Ẑ|Σ|[u, :]

)
,︸ ︷︷ ︸

d|Σ| columns

B̂ = I ,

b̂ = 0,

Ĉ = 1>,

ĉu =
p̂(u)

p̂(uΣ?)
− 1.

1.4.1. EXISTENCE AND UNIQUENESS OF THE SOLUTION

In this Section, we check that the solutions x∗ and x̂∗ to the previous unperturbed and perturbed quadratic programming
problems exists. We denote the kernel of a matrix M by N(M) and the range by R(M). We denote by E the matrix and e
the vector such that

E =

(
B
C

)
, e =

(
b
c

)
.

First, its straightforward to verify that the sets delimited by the linear constraints are not empty for both the unperturbed
and perturbed problems. Thus, using Theorem 1 in (Lőtstedt, 1983), we know that x∗ et x̂∗ exists.

Next, we show that

N(Q) = N(Q̂) = {0}, (3)

N(E) = N(Ê) = {0}. (4)

For all the quadratic programming problems involved in CH-PRFA, we have that B = B̂ = I . So N(E) = N(Ê) = {0}.
Moreover, as rang(Z) = d, we also have that N(Q) = {0}. Lastly, we have that N(Q̂) = {0}, with probability 1, by
density of invertible matrices. Again using Theorem 1 in (Lőtstedt, 1983), we know that x̂∗ and x∗ are unique.

1.4.2. BOUND ON THE PERTURBATIONS

First, we verify that for all quadratic programming problems in CH-PRFA, we have

B = B̂, b = b̂, C = Ĉ.
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This implies E = Ê. Next, we adopt the same notations than in (Lőtstedt, 1983) by denoting G = EQ†. So, we have that
Ĝ = EQ̂†. In addition, we denote v∗ = 2(G†)>(Qx∗ + PR(Q)q) where PR(Q) is a projector on R(Q). As (α0, A,α∞)
defines a PRFA by hypothesis, we have exactly that Qx∗ + PR(Q)q = 0. Thus, we have v∗ = 0. As the basis is complete,
we have PR(Q)q = q. These particular properties will allow us simplifying the results of Theorem 3 in (Lőtstedt, 1983).
Theorem 2. If Equation (3) holds, let x∗ be the solution of (1) and x̂∗ be a perturbed solution. If Qx∗ + PR(Q)q = 0,
PR(Q)q = q, B = B̂, b = b̂ and C = Ĉ, then

‖x̂∗ − x∗‖2 ≤ 2‖q‖2
(

1 +
∥∥∥Q̂∥∥∥

2

∥∥∥Q̂†∥∥∥
2
‖E‖2

∥∥E†∥∥
2

)∥∥∥Q̂† −Q†∥∥∥
2

+
∥∥∥Q̂∥∥∥

2

∥∥∥Q̂†∥∥∥
2

∥∥E†∥∥
2
‖ê− e‖2 + 2

∥∥∥Q̂†∥∥∥
2
‖q̂− q‖2.

(5)

Proof. We start by the unsimplified bound of the Theorem 3 in (Lőtstedt, 1983),

‖x̂∗ − x∗‖2 ≤
∥∥Qx∗ − PN(Q>)q

∥∥
2

(∥∥∥Q̂† −Q†∥∥∥
2

+
∥∥∥Q̂†∥∥∥

2

∥∥∥Ĝ†∥∥∥
2

∥∥∥Ĝ−G∥∥∥
2

)
+
∥∥∥Q̂†∥∥∥

2

(
2

∥∥∥∥1

2

(
Ĝ−G

)>
v∗ − (q̂− q)

∥∥∥∥
2

+
∥∥∥Ĝ†∥∥∥

2
‖ê− e‖2

)
.

As PN(Q>) = PR(Q) and Qx∗ + PR(Q)q = 0 then∥∥Qx∗ − PN(Q>)q
∥∥

2
= 2‖q‖2.

In addition, as v∗ = 0 we have ∥∥∥∥1

2

(
Ĝ−G

)>
v∗ − (q̂− q)

∥∥∥∥
2

= ‖q̂− q‖2.

Moreover, as G = EQ† et E = Ê, we obtain∥∥∥Ĝ−G∥∥∥
2

=
∥∥∥E (Q̂† −Q†)∥∥∥

2
≤ ‖E‖2

∥∥∥Q̂† −Q†∥∥∥
2
.

In addition, as N(E) = {0} and N(Q) = {0}, we have Ĝ† =
(
EQ̂†

)†
= Q̂E† and using the triangle inequality∥∥∥Ĝ†∥∥∥

2
≤
∥∥E†∥∥

2

∥∥∥Q̂∥∥∥
2
.

Finally, we obtain

‖x̂∗ − x∗‖2 ≤ 2‖q‖2
(

1 +
∥∥∥Q̂∥∥∥

2

∥∥∥Q̂†∥∥∥
2
‖E‖2

∥∥E†∥∥
2

)∥∥∥Q̂† −Q†∥∥∥
2

+
∥∥∥Q̂∥∥∥

2

∥∥∥Q̂†∥∥∥
2

∥∥E†∥∥
2
‖ê− e‖2 + 2

∥∥∥Q̂†∥∥∥
2
‖q̂− q‖2.

To further simplify, we need a Lemma in (Wedin, 1972) that bounds the perturbation in the Moore-Pseudo inverse.

Lemma 2. If
∥∥∥Q̂−Q∥∥∥

2

∥∥Q†∥∥
2
≤ κ < 1 then ∥∥∥Q̂†∥∥∥

2
≤ 1

1− κ
∥∥Q†∥∥

2
,

and ∥∥∥Q̂† −Q†∥∥∥
2
≤
√

2
∥∥∥Q̂†∥∥∥

2

∥∥Q†∥∥
2

∥∥∥Q̂−Q∥∥∥
2
≤
√

2

1− κ
∥∥Q†∥∥2

2

∥∥∥Q̂−Q∥∥∥
2
.

Thus, Lemma 2 implies that

‖x̂∗ − x∗‖2 ≤
2
√

2

1− κ
‖q‖2

(
1 +

1

1− κ

∥∥∥Q̂∥∥∥
2

∥∥Q†∥∥
2
‖E‖2

∥∥E†∥∥
2

)∥∥Q†∥∥2

2

∥∥∥Q̂−Q∥∥∥
2

+
1

1− κ

∥∥∥Q̂∥∥∥
2

∥∥Q†∥∥
2

∥∥E†∥∥
2
‖ê− e‖2

+
2

1− κ
∥∥Q†∥∥

2
‖q̂− q‖2.

(6)

In the sequel, we analyze each quadratic programming problems separately.
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1.5. Perturbations in the automata parameters

1.5.1. PERTURBATIONS IN THE INITIAL PROBABILITIES

In this section, to propose a bound on the perturbation in α̂0, we focus on the following problem,

{âuε} = argmin
{auε }

∥∥∥∥∥∥p̂−
∑
u∈R̂

auε p̂u

∥∥∥∥∥∥
2

s.t.
∑
u∈R̂

auε = 1 and auε ≥ 0.

Proposition 3. Let κ be a real in [0, 1[, if εconv ≤ 1√
d
κσd, then

‖α̂0 −α0‖1 ≤ 2(
√

2 + 2)
d2

σ3
d (1− κ)

2 ε
conv + 2

√
d

σd (1− κ)
εest.

Proof. First, we recall that ê = e =
(
b> c>

)>
=
(

0 . . . 0 −1
)>

. By replacing in Equation (6), we obtain
that

‖x̂∗ − x∗‖2 ≤
2
√

2

1− κ
‖q‖2

(
1 +

1

1− κ

∥∥∥Q̂∥∥∥
2

∥∥Q†∥∥
2
‖E‖2

∥∥E†∥∥
2

)∥∥Q†∥∥2

2

∥∥∥Q̂−Q∥∥∥
2

+
2

1− κ
∥∥Q†∥∥

2
‖q̂− q‖2.

Next, we have
E>E = B>B + C>C = Id + Ud,

where Id is the identity matrix of dimension d and Ud is the unity matrix (all the coefficients equal 1) of dimension d. We
denote by λmax(M) (resp. λmin(M)) the largest (resp. smallest) eigenvalue of M . Note that, the eigenvalues of Ud are d
with multiplicity one and 0 with multiplicity d− 1. This implies that

‖E‖22 = λmax(E>E) = λmax(Id + Ud) = 1 + d,

and ∥∥E†∥∥2

2
= λmin(E>E) = λmin(Id + Ud) = 1.

These properties allow us to simplify again Equation (6),

‖x̂∗ − x∗‖2 ≤
2
√

2

1− κ
‖q‖2

(
1 +

√
1 + d

1− κ

∥∥∥Q̂∥∥∥
2

∥∥Q†∥∥
2

)∥∥Q†∥∥2

2

∥∥∥Q̂−Q∥∥∥
2

+
2

1− κ
∥∥Q†∥∥

2
‖q̂− q‖2.

In addition, as Q = Z>, we have that
∥∥Q†∥∥

2
= 1

σd
, where σd is the smallest eigenvalue of Z.

Now, we focus on ‖q‖2 and
∥∥∥Q̂∥∥∥

2
, where q = −H>B 1ε and Q̂ = Ẑ>. First, as q contains probabilities, we have that

‖q‖2 ≤ ‖q‖1 ≤
∥∥H>B 1ε∥∥1

=
∑
u∈S

p(u) ≤ 1.

Secondly, the Hölder inequality implies ∥∥∥Q̂∥∥∥
2
≤
√∥∥∥Q̂∥∥∥

1

∥∥∥Q̂∥∥∥
∞

.

On one hand, we have
∥∥∥Q̂∥∥∥

1
=
∥∥∥Ẑ>∥∥∥

1
= maxu∈R̂

∑
v∈S

p̂(uv)
p̂(uΣ) ≤ 1. On the other hand, we show that

∥∥∥Q̂∥∥∥
∞

=∥∥∥Ẑ>∥∥∥
∞

= maxv∈S
∑
u∈R̂

p̂(uv)
p̂(uΣ) ≤

∣∣∣R̂∣∣∣ = d. Thus, we have∥∥∥Q̂∥∥∥
2
≤
√
d.

Finally, we obtain that

‖α̂0 −α0‖2 ≤
2
√

2

σ2
d (1− κ)

(
1 +

√
d (1 + d)

σd (1− κ)

)∥∥∥Ẑ − Z∥∥∥
2

+
2

σd (1− κ)
‖q̂− q‖2.
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When we considered the perturbation in the convex hull, we showed that σd ≤ 1. As κ < 1, we have

1 +

√
d (1 + d)

σd (1− κ)
≤

1 +
√
d (1 + d)

σd (1− κ)
≤ (1 +

√
2)d

σd (1− κ)
,

because for d ≥ 1, we have 1 +
√
d (1 + d) ≤ (1 +

√
2)d. Combining the previous inequalities leads to

‖α̂0 −α0‖2 ≤
2(
√

2 + 2)d

σ3
d (1− κ)

2

∥∥∥Ẑ − Z∥∥∥
2

+
2

σd (1− κ)
‖q̂− q‖2.

The next step is to insert the bounds on
∥∥∥Ẑ − Z∥∥∥

2
and ‖q̂− q‖2. First, we have

‖q̂− q‖2 =

∥∥∥∥(ĤB −HB)> 1ε

∥∥∥∥
2

=

√∑
v∈S

(p̂(v)− p(v))
2 ≤

√∑
v∈Σ?

(p̂(v)− p(v))
2

=
∥∥∥d̂∞ε − d∞ε

∥∥∥
2
.

Next, using properties of the norm `2 and of the Frobenius norm, we show that

∥∥∥Ẑ − Z∥∥∥
2
≤
∥∥∥Ẑ − Z∥∥∥

F
=

√√√√∑
u∈R̂

(∥∥∥Ẑ[u, :]− Z[u, :]
∥∥∥

2

)2

≤

√√√√∑
u∈R̂

(∥∥∥d̂u − du

∥∥∥
2

)2

≤
√
dmax
u∈R̂

∥∥∥d̂u − du

∥∥∥
2
.

Thus, as ∥∥∥Q̂−Q∥∥∥
2

=
∥∥∥Ẑ − Z∥∥∥

2
≤
√
dmax
u∈R̂

∥∥∥d̂u − du

∥∥∥
2
κσd,

we have that
∥∥∥Q̂−Q∥∥∥

2
≤ κσd holds if maxu∈R̂

∥∥∥d̂u − du

∥∥∥
2
≤ 1√

d
κσd. Finally, using norms properties, we obtain

‖α̂0 −α0‖1 ≤
√
d‖α̂0 −α0‖2 and

‖α̂0 −α0‖1 ≤ 2(
√

2 + 2)
d2

σ3
d (1− κ)

2 max
u∈R̂

∥∥∥d̂u − du

∥∥∥
2

+ 2

√
d

σd (1− κ)

∥∥∥d̂∞ε − d∞ε

∥∥∥
2
.

To conclude, just substitute in the final inequality

max
u∈R̂

∥∥∥d̂u − du

∥∥∥
2

= εconv

and ∥∥∥d̂∞ε − d∞ε

∥∥∥
2
≤ max

u∈P

∥∥∥d̂∞u − d∞u

∥∥∥
2

= εest.

1.5.2. PERTURBATIONS ON TRANSITION PROBABILITIES

In this Section, we focus on the following problems, for all u ∈ R̂

{âvu,o} = argmin
{avu,o}

∑
o∈Σ

∥∥∥∥∥∥ȯp̂u −
∑
v∈R̂

avu,op̂v

∥∥∥∥∥∥
2

s.t.
∑

v∈R̂,o∈Σ

avu,oȯ = 1− p̂u1ε and avu,o ≥ 0 .

Proposition 4. Let κ be a real in [0, 1[, if εconv ≤ 1√
d
κσd, then

∥∥∥Â−A∥∥∥
∞
≤ 2(
√

2 + 2)
d2
√
|Σ|

σ3
d(1− κ)2

εconv +
d

σd(1− κ)
‖α̂∞ −α∞‖∞ + 2

√
d

σd(1− κ)
εconv.

The proof of Proposition 4 follows the same steps than Proposition 3 for each individual problems and then combine the
results for all u ∈ R̂.
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Proof. First, we have

E>E = B>B + C>C

= Id|Σ| + Ud|Σ|,

This implies that
‖E‖22 = λmax

(
E>E

)
= λmax

(
Id|Σ| + Ud|Σ|

)
= 1 + d |Σ| .

In addition, we have ∥∥E†∥∥2

2
= λmin

(
E>E

)
= λmin

(
Id|Σ| + Ud|Σ|

)
= 1.

By replacing in Equation (6), for the problem associated with u ∈ R̂, and assuming
∥∥∥Q̂−Q∥∥∥

2
≤ σdκ we obtain,

‖x̂∗u − x∗u‖2 ≤
2
√

2

1− κ
‖qu‖2

(
1 +

√
1 + d |Σ|
1− κ

∥∥∥Q̂∥∥∥
2

∥∥Q†∥∥
2

)∥∥Q†∥∥2

2

∥∥∥Q̂−Q∥∥∥
2

+
1

1− κ

∥∥∥Q̂∥∥∥
2

∥∥Q†∥∥
2
‖êu − eu‖2

+
2

1− κ
∥∥Q†∥∥

2
‖q̂u − qu‖2.

Moreover, as Q is block diagonal, Q has the same eigenvalues than Z> and
∥∥Q†∥∥

2
=
∥∥Z>∥∥

2
= 1

σd
.

Now, we analyze ‖qu‖2 and
∥∥∥Q̂∥∥∥

2
. First, we have that

‖qu‖2 ≤ ‖qu‖1 ≤
∑
o∈Σ

∑
v∈S

p(uov)

p(uΣΣ?)
≤ p(uΣ?)

p(uΣ?)
= 1.

Next, the Hlder inequality implies that ∥∥∥Q̂∥∥∥
2

=
∥∥∥Ẑ>∥∥∥

2
≤
√∥∥∥Ẑ>∥∥∥

1

∥∥∥Ẑ>∥∥∥
∞

.

On one hand, we have that
∥∥∥Ẑ>∥∥∥

1
= maxu∈R̂

∑
v∈S

p̂(uv)
p̂(uΣ) ≤ 1. On the other hand, we show that

∥∥∥Ẑ>∥∥∥
∞

=

maxv∈S
∑
u∈R̂

p̂(uv)
p̂(uΣ) ≤

∣∣∣R̂∣∣∣ = d. Thus, we have ∥∥∥Q̂∥∥∥
2
≤
√
d.

The two previous inequalities implies that,

‖x̂∗u − x∗u‖2 ≤
2
√

2

σ2
d(1− κ)

(
1 +

√
d(1 + d |Σ|)
σd(1− κ)

)∥∥∥Ẑ − Z∥∥∥
2

+

√
d

σd(1− κ)
‖êu − eu‖2 +

2

σd(1− κ)
‖q̂u − qu‖2.

When we considered the perturbation in the convex hull, we showed that σd ≤ 1. As κ < 1, we have

1 +

√
d (1 + d |Σ|)
σd (1− κ)

≤
1 +

√
d (1 + d |Σ|)

σd (1− κ)
≤

(1 +
√

2)d
√
|Σ|

σd (1− κ)
,

because for d ≥ 1, we have 1 +
√
d (1 + d) ≤ (1 +

√
2)d. Replacing in the main inequality leads to

‖x̂∗u − x∗u‖2 ≤
2(
√

2 + 2)d
√
|Σ|

σ3
d(1− κ)2

∥∥∥Ẑ − Z∥∥∥
2

+

√
d

σd(1− κ)
‖êu − eu‖2 +

2

σd(1− κ)
‖q̂u − qu‖2.

Because the norm `∞ is the maximum absolute row sum, we have∥∥∥Â−A∥∥∥
∞

= max
u∈R̂

(
∥∥∥Â[u, :]−A[u, :])>

∥∥∥
1

= max
u∈R̂
‖x̂u − xu‖1 ≤

√
dmax
u∈R̂
‖x̂u − xu‖2.
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The next step is to insert the bounds on
∥∥∥Ẑ − Z∥∥∥

2
and

∥∥∥Ẑ − Z∥∥∥
2
, maxu∈R̂ ‖q̂u − qu‖2 and maxu∈R̂ ‖êu − eu‖2 First,

using properties of the norm `2 and of the Frobenius norm, we show that∥∥∥Ẑ − Z∥∥∥
2
≤
∥∥∥Ẑ − Z∥∥∥

F
=

√√√√∑
u∈R̂

(∥∥∥Ẑ[u, :]− Z[u, :]
∥∥∥

2

)2

≤

√√√√∑
u∈R̂

(∥∥∥d̂u − du

∥∥∥
2

)2

≤
√
dmax
u∈R̂

∥∥∥d̂u − du

∥∥∥
2
.

Thus, as ∥∥∥Q̂−Q∥∥∥
2

=
∥∥∥Ẑ − Z∥∥∥

2
≤
√
dmax
u∈R̂

∥∥∥d̂u − du

∥∥∥
2
κσd,

the condition
∥∥∥Q̂−Q∥∥∥

2
≤ κσd holds if, maxu∈R̂

∥∥∥d̂u − du

∥∥∥
2
≤ 1√

d
κσd. Secondly, we have

max
u∈R̂
‖q̂u − qu‖2 = max

u∈R̂

∥∥( Ẑ1[u, :]− Z1[u, :] . . . Ẑ|Σ|[u, :]− Z|Σ|[u, :]
)∥∥

2

≤ max
u∈R̂

∥∥( Ẑ[u, :]− Z[u, :] Ẑ1[u, :]− Z1[u, :] . . . Ẑ|Σ|[u, :]− Z|Σ|[u, :]
)∥∥

2

≤ max
u∈R̂

∥∥∥d̂u − du

∥∥∥
2
.

Finally, as b̂ = b, we have

max
u∈R̂
‖êu − eu‖2 = max

u∈R̂
‖ĉu − cu‖2 = max

u∈R̂

∣∣∣∣ p̂(u)

p̂(uΣ?)
− p(u)

p(uΣ?)

∣∣∣∣ = ‖α̂∞ −α∞‖∞.

To conclude, we use the three last equalities and inequalities on maxu∈R̂ ‖q̂u − qu‖2,
∥∥∥Q̂−Q∥∥∥

2
and

maxu∈R̂ ‖êu − eu‖2, in addition to maxu∈R̂

∥∥∥d̂u − du

∥∥∥
2

= εconv to replace in the main inequality.

1.5.3. PERTURBATIONS IN THE FINAL PROBABILITIES

The proof of Proposition 5 is much simpler than the previous as it does not involve quadratic programming problems.
Proposition 5.

‖α̂∞ −α∞‖∞ ≤ ε
conv.

Proof. By definition ‖α̂∞ −α∞‖∞ = maxu∈R̂

∣∣∣ p̂(R̂(i))

p̂(R̂(i)Σ?)
− p(u)

p(uΣ?)

∣∣∣. Yet, we have

max
u∈R̂

∣∣∣∣ p̂(u)

p̂(uΣ?)
− p(u)

p(uΣ?)

∣∣∣∣ = max
u∈R̂

√(
p̂(u)

p̂(uΣ?)
− p(u)

p(uΣ?)

)2

≤ max
u∈R̂

√√√√∑
v∈S

(
p̂(uv)

p̂(uΣ?)
− p(uv)

p(uΣ?)

)2

≤ max
u∈R̂

∥∥∥d̂u − du

∥∥∥
2
.

To conclude, just substitute in the final inequality, ∥∥∥d̂u − du

∥∥∥
2

= εconv.

1.6. Perturbations in the distribution

Before proving Theorem 1, we prove the following Proposition from which Theorem 1 can be easily deduced.
Proposition 6. Under the same hypothesis than Theorem 1, for all 0 < δ < 1, there exists a constant K such that, for all
t > 0, ε > 0, with probability 1− δ, if

n ≥ K t2d4 |Σ|
ε2σ10

d

log

(
|P|
δ

)
,

the algorithm CH-PRFA returns a PFA realizing p̂ such that∑
u∈Σt

|p̂(u)− p(u)| ≤ ε.
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Before proving Proposition 6, we define few terms and prove a useful Lemma. We define,

ρ0 = ‖α̂0 −α0‖1,
ρ∞ = ‖α̂∞ −α∞‖∞,

ρΣ =
∑
o∈Σ

∥∥∥Âo −Ao∥∥∥
∞

=
∥∥∥Â−A∥∥∥

∞
.

In addition, we introduce the following variables,

γk =
∑
u∈Σk

∥∥α>0 Au∥∥1
,

γ∞ = ‖α∞‖∞,
γΣ = ‖A‖∞.

Lemma 3. For a PFA (and so for a PRFA) (α0, A,α∞), we have

γk ≤ 1, γ∞ ≤ 1, γΣ ≤ 1.

Proof.

γk =
∑
u∈Σk

p(uΣ?) = p(ΣkΣ?) ≤ 1,

γ∞ ≤ max
u∈R

p(u)

p(uΣ?)
≤ 1,

γΣ =

∥∥∥∥∥∑
o∈Σ

Ao1

∥∥∥∥∥
∞

= ‖1−α∞‖∞ ≤ 1.

Proof of Proposition 6. Assuming that εest ≤ σ3
d

648
√
d

we have by Proposition 2,

εconv = max
u∈R̂

∥∥∥d̂u − du

∥∥∥
2
≤ 162

εest

σ2
d

.

Assuming that εconv ≤ 1√
d
κσd, taking κ = 1

3 , setting c0, c∞ and cΣ to be adequate constants and using that d ≥ 1 and
|Σ| ≥ 1, we have by Propositions 3 to 5,

ρ0 ≤
9

2
(
√

2 + 1)
d2

σ3
d

εconv + 3

√
d

σd
εest ≤ 93(

√
2 + 2)

d2

σ5
d

εest + 3

√
d

σd
εest ≤ c0d

2

σ5
d

εest.

Likewise, if εconv ≤ 1√
d
κσd then,

ρ∞ ≤ εconv ≤ 162

σ2
d

εest =
c∞
σ2
d

εest.

Likewise, if εconv ≤ 1√
d
κσd then,

ρΣ ≤
9

2
(
√

2 + 2)
d2
√
|Σ|

σ3
d

εconv +
3

2

d

σd
‖α̂∞ −α∞‖∞ + 3

√
d

σd
εconv

≤ 93(
√

2 + 2)
d2
√
|Σ|

σ5
d

εest + 35 d

σ3
d

εest + 2 · 35

√
d

σ3
d

εest

≤
cΣd

2
√
|Σ|

σ5
d

εest.
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We denote c = max(c0, c∞, cΣ) and

ρ =
cd2
√
|Σ|

σ5
d(1− κ)2

εest,

By the previous inequalities, we obtain
max(ρ0, ρ∞, ρΣ) ≤ ρ.

Next, we can apply Lemma 5.4.4 in (Balle, 2013) that shows that for all integer t ≥ 0,

∑
u∈Σt

|p̂(u)− p(u)| ≤ (γ∞ + ρ∞)

(
(γΣ + ρΣ)

t
ρ0 + ρΣ

t−1∑
i=0

(γΣ + ρΣ)
i
γt−i−1

)
+ γtρ∞.

By Lemma 3, we have

∑
u∈Σt

|p̂(u)− p(u)| ≤ (1 + ρ∞)

(
(1 + ρΣ)

t
ρ0 + ρΣ

t−1∑
i=0

(1 + ρΣ)
i

)
+ ρ∞

= (1 + ρ∞)

(
1 + (1 + ρΣ)

t
ρ0 + ρΣ

t−1∑
i=0

(1 + ρΣ)
i

)
− 1

= (1 + ρ∞)
(

1 + (1 + ρΣ)
t
ρ0 + (1 + ρΣ)

t − 1
)
− 1

= (1 + ρ∞) (1 + ρΣ)
t
(1 + ρ0)− 1.

Replacing ρ0, ρΣ and ρ∞ with ρ leads to ∑
u∈Σt

|p̂(u)− p(u)| ≤ (1 + ρ)
t+2 − 1.

Now we remark that if p = O( 1
t ) then we can prove a bound on

∑
u∈Σt |p̂(u)− p(u)| without an exponential dependency

on t because (1 + x
2t )

t ≤ 1 + x for x ≤ 1. So, if

εest ≤ σ3
d

648
√
d

, εconv ≤ 3
σd√
d

, ρ ≤ 1

2(t+ 2)
,

then ∑
u∈Σt

|p̂(u)− p(u)| ≤
(

1 +
2(t+ 2)ρ

2(t+ 2)

)t+2

− 1 ≤ 2(t+ 2)ρ.

As we have

εconv ≤ 162
εest

σ2
d

, εest =
σ5
d

cd2
√
|Σ|

ρ,

the conditions are satisfied for

εest ≤ c′σ5
d

d2
√
|Σ|(t+ 2)

≤ min

(
1

648

σ3
d√
d
,

1

2 · 35

σ3
d√
d
,

2

81

σ5
d

cd2
√
|Σ|(t+ 2)

)
, (7)

where c′ is such that the last inequality is verified.

Finally, by proposition 1, with probability 1− δ, we have for |P| ≥ 2 and for n ≥ 1 that

εest ≤ 1√
n

(
1 +

√
log

(
|P|
δ

))
≤

(
1 +

√
3

2

)√
1

n
log

(
|P|
δ

)
,

because log(2) > 2
3 and

√
3
2

√
log
(
|P|
δ

)
≥ 1.
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So, we can find a suitable constant K such that ε if

n ≥ K t2d4 |Σ|
ε2σ10

d

log

(
|P|
δ

)
,

then (7) holds and ∑
u∈Σt

|p̂(u)− p(u)| ≤ 9

4
(t+ 2)(t+ 1)

cd2
√
|Σ|

σ5
d

εest ≤ ε.

Proof of Theorem 1. By Proposition 6, if we replace ε by ε
t , there exists a suitable constantK such that for all t > 0, ε > 0,

with probability 1− δ, if

n ≥ K t4d4 |Σ|
ε2σ10

d

log

(
|P|
δ

)
,

then ∑
u∈Σ≤t

|p̂(u)− p(u)| ≤ ε

t
.

Finally, we sum over t to get ∑
u∈Σ≤t

|p̂(u)− p(u)| ≤ ε.

Here, we could continue, as it is done in (Bailly, 2011), to get a bound on∑
u∈Σ?

|p̂(u)− p(u)| ≤
∑
u∈Σ≤t

|p̂(u)− p(u)|+ p̂(Σ>t) + p(Σ>t),

by using the exponential decay of
∑
u∈Σ>t p̂(u) and

∑
u∈Σ>t p̂(u). Such a bound would depend on the spectral radius

ρ and ρ̂ of p and p̂. Finally, this would give a bound in total variation. However, this technique does not give an explicit
control over the constants involved.
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