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I. THE ACTIVE SLAM PROBLEM

A central problem in deliberative robotics is mapping an unknown
world. Search and rescue robots enter an unknown disaster area and
must generate a map as they explore. Without an accurate map of the
world, a robot cannot effectively reason about future actions. Simul-
taneous Localization and Mapping (SLAM) is a successful technique
for mapping an unknown environment with relatively dense, unique
features. Usually, acquiring sensor data over the whole map requires
human intervention to cover unexplored area. This process does not
scale as intelligent robots become ubiquitous. Beyond the fact that
offline algorithms cannot determine a strategy to completely cover
the map, the computed path is clearly not optimal. Recently, some
online algorithms attempted to actively choose the next observation
point depending on the data already recorded to optimize coverage
and accuracy.

Figure 1. Example robot exploration using SPLAM

Under real-world time constraints, however, a robot must choose
between coverage and accuracy of an unknown area in order to
maximize information gain while dealing with imperfect and incom-
plete information. To be effective in online mapping, a robot must
be able to evaluate the possible information gained by closing-the-
loop or moving to a new observation point, as shown on Fig. 1. We
will address the time-constrained issue, the choice of an uncertainty
measure, and the exploration-exploitation trade-off in Active SLAM.

II. RELATED WORK

Active SLAM is a particular issue of Active Sensing [6], which
address the problem of how to optimally control a sensor for
information gathering. Active SLAM computes an exploration policy
– a strategy – for a robot equipped with a SLAM algorithm in an

unknown environment. The aim is to obtain a policy which trades
off exploration (maximizing map coverage) and exploitation (going
back to known locations to increase the accuracy of the map).
The first approaches developed to solve this hard task were greedy
algorithms [2] that use the current knowledge to maximize the
information gained in the next measurement. It should be noted that
planning with a longer horizon could improve results.

The most general way to describe the policy is a sequence of
freely chosen actions. The problem of finding a sequence of actions
to minimize cost for systems that fully observe the system’s state
is called a Markov Decision Process (MDP). A system where the
measurement is noisy or does not fully observe the system state is
a Partially Observable Markov Decision Process (POMDP). Clearly,
Active SLAM is a continuous-state and continuous-action POMDP.
In that formulation, solving a POMDP is intractable computationally.
Nevertheless, authors succeed to solve it with approximations or
discretization. In [3], authors use Bayesian optimization of a Gaussian
process. In [4], model-free reinforcement learning is applied. While
these approaches seem to produce high quality paths, their computa-
tion is expensive.

III. APPROACH

A. Implementation Overview

Instead of trying to solve the POMDP, we implemented our solution
using Model Predictive Control (MPC). In [8, 7, 5], authors use Model
Predictive Control optimization with multiple step look-ahead in order
to decide the next action to maximize the information gain. To plan the
next actions, the robot simulates possible moves and predicts sensing.
To simulate its moves, the robot chooses between a set of discretized
actions. To predict the sensing, the robot uses its estimated map of the
known features and a noisy sensor model. Thus, the robot builds a tree
of possible paths from its current position and predicts the sensing
along these trajectories. These observations are used to update the state
of a Kalman Filter (KF). The first action that produced the trajectory
which leads to the maximum information gain is then selected to be
executed. After that move, the state of the KF is updated according the
current sensing and the MPC search is run again to find the next action.

The trade-off between exploration (visiting unexplored area) and
exploitation (reducing map uncertainty) is made by switching the cur-
rent goal of a state machine guiding the move generation of the robot.
A goal is represented by a virtual feature with a big uncertainty. That
causes the robot to visit that feature. During exploration, the current
goal is set to a point in an unexplored area of the map. In exploitation,
the current goal is set to an already visited location to enhance the
quality (reduce uncertainty) of a landmark or the robot state. Below
we describe the implementation of our main contributions.



B. Framework

We used the Mobile Robot Programming Toolkit (MRPT) as our
simulation framework [1]. It is an open-source toolkit designed to
provide simulation tools for rapid robot algorithm development in
C++. Modules include mapping, sensing, robot dynamics modeling,
and a SLAM framework. Also included is a 3D visualization tool
to display the robot in an environment based on OpenGL. Using
MRPT, we implemented a basic robot model that is controlled with
rotational and linear velocities. The simulation uses a PID controller
to reach the commanded velocities. Each millisecond the pose of
the robot is updated. We also inject Gaussian noise into odometry
readings to simulate imprecise ego-motion sensing. The robot sensor
provides distance and bearing measurements for all landmarks in its
field of view with injected Gaussian noise to simulate imprecise sensor
readings. Finally, SLAM is performed by an Extended Kalman Filter;
we used the implementation of the MRPT::SLAM package. Also, we
implemented a time-step simulation to update the robot position within
the world for discrete time steps during simulation. Moving commands
and sensing commands are sent every time-step.

C. Switching Policy

Figure 2. Exploration States

We implemented a 3-state state machine to control the movement
policy of the robot, shown in figure 2. The state transitions are defined
in terms of the robot state uncertainty, the landmark uncertainties,
and the history of information gained from previous actions. The
default goal is to Explore which will choose the predicted best point
outside the known area to explore. The choice of point is described
below. If the robot state uncertainty increases beyond a threshold,
the state changes to Improve Localization and the robot returns to a
well-known point in its map to reduce state uncertainty. If the overall
map uncertainty is above a threshold, the state changes to Improve
Map and the robot revisits known landmarks with high uncertainty.
Our thresholds for switching states is predetermined by the user and
reflects the desire to focus on exploration or exploitation. Thus, we
will avoid infinite loops and map inconsistency.

D. Uncertainty Measure

The uncertainty measure is related to the SLAM algorithm used.
The classical approach, which we use, relies on Extended Kalman
Filters (EKFs) [5]. The uncertainty is contained in the covariance ma-
trix of the EKF. The global goal is to minimize the covariance matrix.
Possible norms include the trace, the determinant, and the maximum
of Eigen values. The trace has been shown to most effectively measure
the uncertainty for SLAM [5, 7]. So, we focus on the trace.

E. Map Expansion

We implemented the frontier-based goal selection [8] using the
nearest attractive point [5] to determine the expected best point to
move toward during the exploration state. This works by first eval-
uating the predicted information gain for regions just beyond the
boundary of the known map. Using the maximum predicted gain area,
we place an artificial attractor in the unknown region to bias the robot’s
movement toward this goal. These attractors only effect the robot
movement in the explore state.

IV. EVALUATION

We compare multiple MPC algorithms running our SPLAM imple-
mentation on two maps using the MRPT simulator. The small sim-
ulated map contains 30 landmarks randomly distributed throughout
400 m2 and the second contains 70 landmarks randomly distributed
throughout 900 m2. The robot is allowed to wander away from the
bounding box around the landmarks, but the attractive forces of visible
landmarks always pull the robot back into the landmark region. All the
simulation parameters are detailed below. We tested the SPLAM using
greedy, 2-step MPC, and 3-step MPC policies.

(a) Start of greedy (b) End of greedy

(c) Start of 3-step MDP (d) End of 3-step MDP
Figure 3. Results of SPLAM on small map

The performance metrics are the map coverage after a maximum
of 500 time steps if 100% coverage is not reached prior, and the
reamining uncertainty in the map as defined by the covariance matrix
of the EKF. In our simulations, one time step is 500 ms. Visualization
results are shown in Figure 3 for the small map and Figure 1 for the
large map. The estimated path is lighter, while the actual path is darker.
Each landmark is marked with a + sign and the diameter of the ring
around it indicates the uncertainty of that landmark. Lines eminating
from the robot frame indicate landmarks that are within range of the
robot’s sensors. The graphs in Figure 4 show the map uncertainty along
with the coverage percent over the entire 500-step simulation on our
two test maps for each implemented algorithm. The evaluation method
presented is the trace, which is a common norm choice used to evaluate
the uncertainty.
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(a) Small Map

(b) Large Map
Figure 4. Map trace (solid lines) and map coverage (dashed) over the course
of the simulation

Dynamic constraints
Number of discretized actions 9

Max speed 2 m/s
Max turn rate 1 rad/s

Min speed 0 m/s
Min turn rate −1 rad/s

Odometry Error per Step
Noise std (XY) 0.05 m

Noise std (φ) 0.05 degrees
Range and bearing sensor
Min sensor distance 0.5 m
Max sensor distance 7 m

Field of view 360 degrees
Noise std (range) 1 m
Noise std (Yaw) 10 degrees

Robot state thresholds
Max trace for Exploration 0.75 m2

Max trace for Improve Map 0.75 m2

Table I
SIMULATION PARAMETERS

V. DISCUSSION

We proposed a new way to solve the Active SLAM problem
using a Model Predictive Controller to approximate the intractable
exact solution of the associated POMDP. In comparison to the other
previous approaches that used a Greedy algorithm, our solution is able
to efficiently plan with a larger horizon with respect to computation.

Moreover, the state machine is a simple and effective way to deal
with the trade-off between exploration and exploitation. On the Figure
3.b, the greedy algorithm is not able to efficiently cover the entire
map because it frequently loops on itself due to the lack of planning
horizon. In comparison, the 3-step MDP on Figure 3.d, successfully
fulfills the accuracy and coverage requirements. These results are also
shown in Figure 4.a. In contrast with the small map, performance
differences were much more pronounced on the big map. Indeed, on
a big map the greedy algorithm may never explore distant regions
because of its inability to plan some steps ahead. In general, the
greedy algorithm has a tendency to make the robot loop in local
clusters of landmarks. On Figure 4, the MPC with a 3-step look
ahead outperforms the other methods for all metrics; it reaches 100%
coverage faster and the trace converges to its minimum faster. This
shows that our method outperforms previous methods.

For future work, we would like to improve (1) how to predict next
steps, (2) which sequences of actions are evaluated and (3) how to
influence the robot to explore new areas. First, instead of using the
mean positions of estimated landmarks to predicted observations, we
could sample landmark position and observation taking into account
noises and uncertainty. Secondly, we could replace the breath-first
search in the tree of trajectories with an RRT-search to reduce the
computation of the complexity. Moreover RRT will allow us to select
from a continuous set of actions. Another possibility is to optimize a
parametrized trajectories to give the maximum information gain. We
could use simulated annealing. Finally, we would like to replace the
state machine by adding a gain relative to the chance to discover new
feature in unvisited places. The chance to discover new features could
be modeled as an uninformative uniform distribution. So the chance to
discover new features is proportional to the unvisited area covered by
a new observation and to the estimate density of the landmarks. The
density of landmarks can be estimated from already explored area and
already discovered area, in a Bayesian scheme.
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