
MULTI-AGENT PATH PLANNING ALGORITHM FOR
FUTURE AIR TRAFFIC MANAGEMENT

I. PROBLEM DESCRIPTION

Air traffic control is currently operating close to saturation. The
amount of traffic is expected to double by 2025. New decision tools
to provide Traffic Flow Managers adequate information are needed to
handle the upcoming increase in traffic and diminish its environmental
impact. This paradigm shift is sustained by a global effort, namely
NextGen ([1], [2]) in the US and SESAR in Europe.

The main airspace allocation constraint is sector capacity. A sector
is a region of airspace over which traffic is monitored by human
operators. The number of aircraft per time unit in a sector is limited
because of the limited workload an Air Traffic Manager can deal
with. In order to make Traffic Flow Managers able to deal with
more intensive workload, there is a need for efficient multi-agent
path planning algorithm adapted to the specificities of civilian aircraft
management (fast computation, zero risk, fuel efficiency, travel time,
etc). In our intent to contribute to this work, we would like to compare
the performances of several multi-agent motion planning algorithms,
based on the A* algorithm, as solution to this problem.

II. RELATED WORK

This problem is at the junction of two different fields: Air Traffic
Management (ATM) and Robotic Path Planning. ATM focuses on risk
minimization, cognitive aspects (there is a pilot in the plane who might
prefer some manoeuvres) and fairness, which discards solution where
an aircraft sees the cost of its path increasing too much. Multi-agent
path planning often focuses on the optimality of the set of path, the
computational efficiency of the algorithm and often prefer to forget the
non-holonomic constraints of the dynamic of the aircraft.

A. Air Traffic Management
In ATM, several solutions to the problem have been proposed using

linear ([4], [7]) and quadratic ([3]) programming that minimize total
flight time ([7]) or maximize fuel efficiency ([8]). However these
solutions are computationally expensive and do not support a very
large number of aircraft at a time.

B. Multi-agent path planning and A* variations
When multiple agents are needed to be directed in the environment,

A* is not sufficient anymore: different variations are described in [9].
Local Repair A* adapts A* to on-demand reroute but can end up
in deadlock in some maps. Cooperative A* decouples the task into
single agents searches sharing information. Hierarchical A* improves
a heuristic through an abstraction of the state space (we compute
abstract distances). The hierarchy refers to a series of abstractions, each
more general than the previous and not restricted to spatial hierarchy.
Hierarchical Cooperative A* ([9]) is a decoupled planner of the Local
Repair A* family that has been shown to be really efficient.

C. Direction maps
A direction map ([6]) stores information about the direction that

agents have travelled in each portion of a map. Agents then use this
information during planning. Moves running against the direction map
receive additional penalties so that agents are encouraged to move in
the direction indicated in the DM at every step. DM algorithm has

been used with A* in [6]. Our implementation of the DM algorithm
will use a HCA* and a WHCA* planner instead.

III. APPROACH

Our contributions involves both algorithms adaptation and mod-
elization of the air traffic management as a cooperative planning
problem. We implemented different motion planning algorithms issued
from the A* algorithm and adapted them to the constraints of ATM.
In the first group of algorithms (CA*, HCA*), we only care about the
informations given about a trajectory: no information about previous
trajectories is used.

On the other hand, we study an algorithm observations of real
aircraft trajectories highlighted the existence of similar trajectories that
could be clustered ([5]), therefore we studied the possible benefits
of using Direction Maps with these algorithms. As Direction Maps
promotes trajectories that go with the general consensus, we expect that
merging Direction Maps and multi-agents A* algorithm will improve
the overall performances.

We made the following assumptions, valid for all our work:

• All planes have the same speed, which is a reasonable assump-
tion as we consider planes flying at high altitudes.

• Planes can stop on the map. Our resolution corresponding to
a squared nautical mile, this means that the plane would do a
circular movement, but the cost of such a manoeuvre would be
very high for the planner.

A. Algorithms implementation
We implemented four algorithms. The first one (CA*) plans the

trajectories by taking agents one after the other. For each agent an A*
algorithm finds the optimal path taking into account the trajectories
planned for previous agents. Thus, the search has to be made in a 3D
space including time space. Trajectories are shared between agents by a
reservation table. The second one (HCA*) makes some improvements.
Instead of using a given heuristic for the A* search, HCA* computes
an abstract distance that is the length of the shortest path to the goal,
ignoring the time and other agents. The shortest path is found by
running a reverse A*. A drawback of these two previous algorithms
is the dependence to the agent ordering, that can cause deadlocks on
constrained environments. The third algorithm, WHCA*, avoids this
problem by planning a path for an agent while taking into account other
agents for w steps. Then, the search is launched every w or less steps
after changing randomly the agents ordering. The basic used heuristic
is the distance as crow flies. The last algorithm that we implemented
is an attempt to combine between HCA* and distance map (DM).

DM can be used with any heuristic based algorithm. A distance
map indicates for each cell of the grid a preferred direction. It is used
to change the underlying costs of traversing the world. In our case,
HCA* expands nodes in order of increasing cost values f, defined by
f = h + g. When we combine HCA* with DM, the g-cost is modified
to encourage cooperative movement. In other words, nodes are most
likely to be expanded if the direction given by the heuristic h and the
direction of the DM are the same. As planes have similar starts and
goals, we expected that the DM forms a kind of highway for planes.

A DM has to be learned from paths of agents in previous planning.
Once a plane as completed is trajectory, the DM is updated and is
used to plan next planes and so on. There are several ways to combine
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HCA* and DM. We decided to use the DM in HCA* to both calculate
the abstract distance and plan next moves. In other words, the DM is
used to modify both the g-cost when the abstract distance is computed
and the g-cost that is used by HCA* to choose the next node to expand.

B. ATM refinements
Modelling the ATM problem as a cooperative planning problem is

an important issue. In order to adapt our algorithms to the problem
of ATM we added some refinement. The first problem we faced, was
how to discretize the space. We chose to represent the space as an
eight-connected grid map and keep the time continuous. However
the reservation table uses an intrinsic discretized time representation.
At each time a plane holds four cells of the grid in a square. This
corresponds to a safety zone around each aircraft. We defined it as a
3 nautical miles radius around the plane (corresponding to one pixel
on the grid around the plane in each direction except the rear one).

Secondly, we do not allow direct crossing either vertically, horizon-
tally or on the diagonal. This is done by reserving future nodes in the
direction we are going. This reservation can lead us to reserve more
than one node in several cases but it never seemed to arm the traffic
in our simulations.

Finally, we extends the cost model in order to minimize the
number of manoeuvre (ie heading change) that creates discomfort for
passengers. This is done by multiplicating the actual cost by a constant
alpha (α ∼ 0.01) with a exponent proportional to the number of
manoeuvres: Costabstract = Costreal ∗αk , where k is the number
of manoeuvres in the path.

C. Visualization tool
Our goal is to support the Air Traffic Manager in his task and

help him face increasing workload. Therefore we created a basic user
interface that allow him to visualize the aircraft trajectories. As we
already know the aircraft initial and final point over a day for all the
trajectories we test, the tool allows to browse the entire timeline of the
day. But we implemented the algorithms in order to be able to deal
with aircraft on the fly, as they enter the sector. Once an aircraft is in
the sector and has specified where it is going, the Air Traffic Manager
can ask the software what would be the optimal trajectory for the
aircraft under specified constraints (fuel efficiency, weather, passenger
constraints).

IV. EVALUATION

We evaluated the performances of the algorithm for two different
kind of criteria: computational performances and ATM analysis of the
paths.

A. Computational performances
We made several runs (20) of identical simulations in order to judge

of the performances of the algorithm. The two criteria we are interested
in are the time to compute the entire set of paths for a number of
agents and a given environment and the number of nodes explored
by the A* algorithm for computing this paths. We study the influence
of the number of aircraft in the environment and of the size of the
environment for this criteria.

As we used randomly generated path for this part of the evaluation,
we did not tested the DM algorithm because it only makes sense to
use this algorithm on trajectories that are correlated.

Size of the environment: As we can see in Figure 1, the
computation time of WHCA* becomes better when the size of the
environment increases but a basic CA* is performing better for small
environments. However if we look at the number of nodes explored by
each algorithm, it appears that CA* is really inefficient. Overall, we
seen that WHCA* algorithm is a good choice for large environments.

Fig. 1. Performances of the CA*, HCA* and WHCA* algorithms for
different size of the environment (displayed as number of nodes).

Number of agents: As we can see in Figure 2, the WHCA*
does not support well the increase in workload. Indeed, we could not
extract useful data from the run of WHCA* because of the principal
drawback of this algorithm: it does not offer guarantee that it will
find a solution for the n agents. Even if we can suppose that some
better implementation could enhance the performances facing intense
workload, this result shows the need to change the algorithm itself if
we want to use it for ATM purposes.

Fig. 2. Performances of the CA*, HCA* and WHCA* algorithms for
increasing number of agents.

B. ATM analysis of the solution
In order to evaluate our different algorithms, we confronted them

to real data corresponding to a typical day of the Cleveland sector.
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The set of all the joined origin-destination pair is displayed in Figure
IV-B. Finally, we escalated the constraints in order to simulate weather
issues and more intense traffic (up to 10 times).

Fig. 3. Trajectories over the Cleveland sector for one day (2492
aircrafts).

As the running time for each simulation was consequent on a set
of trajectories this large, we did not have time to output statistics from
the simulations. We still looked at the two most important criteria
for aircraft path planning: path length (fuel efficiency) and number of
manoeuvres (passenger comfort).

The only algorithm that returned solutions within an admissible time
on the real data was the CA*. For this algorithm we obtained good
results:

• 90% of the paths on the computed solution were not more than
10% longer the path that would have been computed if the
aircraft was alone.

• 80% of the paths include less than 2 manoeuvres.

Unfortunately we were not able to have a working Direction Maps
algorithm on this very large algorithm. Our supposition is that because
of the tendency of this algorithm to increase the number or nodes
explored by the A* algorithm, the number of explored nodes in our
large environment becomes to large to compute a solution in a feasible
time.

C. Visualization tool and Constraints escalation
Finally, we modified our implementation of the CA* algorithm

in order to allow it to deal with ”on the fly” data. The planes are
considered as they enter the sector and the algorithm computes a path
for them in real time. This part of our work returned very good results
with a capability to deal with aircraft trajectory planning in real time
that far exceeded our attempts. In order to stress the environment,
we tried several experiments like: increasing the number of planes
present in the environment at the same time, increase the safety zone
around the aircraft and add weather disturbances (by creating obstacles
in the environment). In all these cases our planification tool returned
good results, both for computational and ATM criteria (we went up to
increase the traffic by ten times with reasonable real time computation
and paths close from optimal).

V. DISCUSSION

A. Insight into the algorithm
Our approach was not successful for two reasons. The first one is

that DM increase hugely the number of explored nodes. Indeed, as the

g-cost is increased by the DM, the heuristic h is still admissible but
underestimates the cost of traversing the world until the goal too much.
More an heuristic underestimates the g-cost of the rest of the path to
the goal, more expanded nodes will be. Moreover, as HCA* expands
nodes in a 3D space, the phenomenon is increased. The second reason
is that, in large environments, the number of training steps to run
before the DM converges is very large. These two problems make our
current approach intractable. To solve this problem, we could modify
our approach to use the DM only to compute the abstract distance, but
because of the second reason we chose not to explore this possibility.

The complete sub-optimality of the DM algorithm as defined in
[6] only appeared to us quite late. This project made us realize how
important it was to consider every aspect of the algorithm we read
about in a will to implement them because in our case fast and
efficient path planning for small environments became extremely slow
computation in a large environment.

B. Additional work
Among interesting additional work, we believe that it could be

interesting to improve the WHCA* algorithm in order to make it more
adapted to important workload.

Another approach for future work would be to increase the realism
of the path prediction by merging an optimal path planner like CA* or
WHCA* with the desired paths specified by the aircraft pilots. In this
approach, a pilot would specify checkpoints for his flight while the
algorithm would compute the sub-paths between every checkpoints.
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