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I. INTRODUCTION

Traffic sign detection and recognition have received an in-
creasing interest in the last few years. This is due to the wide
range of applications: Highway Maintenance, Sign Inventory,
Driver Support Systems, and Intelligent Autonomous Vehicles.
Sign detection involves locating road signs within images, and
sign recognition involves extracting the sign type. In this paper,
we focus on the sign detection task for the development of
an intelligent sign inventory for the Georgia Department of
Transportation (GDOT). The goal of detection is to extract a
region of interest (RoI) for each sign candidate. A RoI is a
part, usually a rectangle, of the original image in which there
is high probability to find a traffic sign. A 3-step system is often
used: segmentation, verification, rectification. Image segmenta-
tion plays an important role in detection. As traffic signs have
very characteristics features – they are composed of few solid
colors and have a regular shape – a segmentation step, usually
based on the shape, the color, or both, is performed to detect RoI.
During verification, each segmented regions have to fulfill a set
of rules. Basically, the size, the shape and the color percentages
of each regions are checked. The last step, rectification, extract
the sign from the background in order to prepare the sign to be
recognized. In this paper, we focus on the segmentation step.

II. RELATED WORK

We chose to focus on segmentation methods that are color-
based. Color-based segmentation algorithms first classify pixels
in different colors corresponding to the usual sign colors (e.g. red
for stop signs). The simplest systems use thresholds [4] on one or
two color components to classify pixels in one of the sign colors.
More elaborated systems use learning methods. For example,
in [7] a RBF neural network is learned to differentiate between
signs pixel and background pixels. Another possibility is to
learn the conditional-class probability density from a training
set of pictures. In [6], a Gaussian Mixture Model for each color
is separately learned by Expectation-Maximization. In [8], an
Artificial Neural Network is used as a regressor to learn the
class-conditional density. In [5], they use a Bayesian classifier,
based on a color modeling space in which the illumination
condition is considered. Then pixels are assigned to the color
that has the maximum likelihood. After classification, pixels are
aggregated in blobs, by connected component analysis [7, 8]
or a regions growing algorithm [6]. Our work on segmentation
can be compared to [2], which use Gabor filters and K-means to
segment the image.

All these systems have some difficulties with these chal-
lenging issues: (1) Change in lighting due to the time of day,
the weather, or shadows, (2) Complex backgrounds: road signs
can be confused with man-made object patterns, (3) Condition
Change: the paint color fades after a long exposure to the sun
and rain. Two reasons explain why actual methods fail. First,
the spatial locality of pixels is not taken into account during
pixel classification but only after (i.e. when pixels are aggregated
in blobs). Second, the flat characteristic texture of road signs
opposed to the complex background texture is not used. To
solve these issues we proposed to use a recent work [1] that,
combines the use of color, texture (described by Gabor filters)
and spatial relationship between pixels for segmentation, using
Markov Random Field (MRF).

III. IMPLEMENTATION

A. Feature extraction using a gabor filter

We used a gabor filter to segment color regions of our images.
This was done following the implementation in [2]. First, the
original image was transformed from RGB to the CIE L* a*
b* color space. This creates the layers: lighting, red-green, and
blue-yellow. We discard the lighting layer and focus on the
distribution of the a* and b* layers.

Using the values from [2], we get two gabor filters that are
even and odd symmetric filters. These are the real (eqn (1)) and
imaginary (eqn (2)) components, respectively, of the complex
gabor filter.
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18 (cos(0.2π(x cos θ + y sin θ)) (1)

Goθ(x, y) = e−
x2+y2

18 (j sin(0.2π(x cos θ + y sin θ)) (2)

At each point, θ is determined by a gradient function to find
the dominant direction of the neighborhood surrounding that
pixel(eqn 3. This gradient function is comprised of both the
vertical (∇y) and horizontal (∇x) gradients of the given layers.
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With the orientation computed and the symmetric gabor fil-
ters, we can get the local energy for each point in the image
(eqn 7). It is described as the square root of the convolution of
a pixel with its corresponding even gabor filter squared, plus the
convolution of the odd gabor filter on the pixel squared. This is
done for each layer using the same formula. It is from these local
energies that the segmentation is performed.
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B. Markov Random Fields
Markov Random Field generalizes graphical model (like

Bayesian network) to the undirected case. For the segmentation
purpose, pixels of an image represent a lattice; each pixel is
connected to its direct neighbors. Let xi,j the random hidden
variable of pixel (i, j). xi,j can take discrete values correspond-
ing to the class label, xi,j ∈= [1;L] where L is the number
of classes. In our experiments, the segmentation is performed
with five classes (L = 5). Let ~yi,j ∈ F , the observed data, in
other words the features associated to the pixel (i, j). We note n
the number of features per pixel. Then we assume that observed
data follows a Gaussian distribution depending on the class of
the hidden variable:

p(~yi,j |xi,j = λ) =
1√
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(8)
Where ~µλ and Σλ are the mean and the covariance of the

Gaussian distribution associated to the label xi,j = λ. In MRF
segmentation, a Gibbs potential is often assumed for the joint
distribution of xi,j’s.
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Where Z is a normalization constant, Ni,j = {(i +
1, j), (i, j + 1), (i − 1, j), (i, j − 1)} is the set of neighboring
indexes of (i, j), β is the smooth parameter and δ(., .) equals 1
if the two terms are different, 0 otherwise. The Gibbs potential
gives a higher probability for smooth segmentations. Thus MRF
segmentation use the spatial correlation between pixels to seg-
ment the image. In our experiments, we set β = 4.

1) Supervised segmentation: In supervised segmentation, we
assume that ~µλ and Σλ are known. Thus, the segmentation is
found by maximizing a posteriori probability (P (x|y)). Unfor-
tunately, exact methods are intractable. So, we used simulated
annealing (SA) with Gibbs sampler to maximized this probabil-
ity.

2) Unsupervised segmentation: Now, assume that ~µλ and
Σλ are unknown, we want to estimate the Gaussian parameters
simultaneously to the segmentation. For this purpose, we used
Expectation-Maximization:

1) Start from a random labeling.
2) Estimate Gaussian parameters.
3) Maximize the a posteriori using SA with Gibbs sampler.
4) Return in 2. until the stop criterion is reached.

In step 2., Gaussian parameters are estimated with the following
equations:
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WhereN is the number of pixels. At each step the log likelihood
increases. The algorithm stops when the difference in the log
likelihood function between two steps is less than 10−7.

IV. EVALUATION

Our initial goal was to perform measurements over approx-
imately 37,000 images by the Louisiana Department of Trans-
portation and Development. However, the CPU time required
for the undertaking was too significant. With the addition of the
Gabor filter described in [2], a Gabor filter had to be computed
for each pixel, in each color channel, of every image. This
proved to be lengthy process that limited us to a reduced set of
test data and modified evaluation procedures. Additionally, time
constraints did not allow us to incorporate our algorithm into an
existing traffic sign detection system [8] as we had planned.

Our approach towards evaluating our implementation is to
measure the uniformity of our segments on a synthetic image
(img IV). Given our knowledge correct boundaries in this image,
we can determine the accuracy of the segments produced by
our algorithm. Pixels within these boundaries will increment a
counter in a corresponding array index. The maximum array
element indicates the highest number of uniform pixels that exist
within the segment.

In addition to the quantitative approach, we will be visually
evaluating the results of image segmentation on real world
images taken from [3]. What we are primarily looking for is
how well the signs in the images are segmented from their
backgrounds. More distinct edges would allow for more accurate
image recognition of these signs, as the shape of a sign holds
important information as to its meaning.
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Figure 1. The synthetic image used to test uniformity in the segmented images

Figure 2. An example result at iteration 8.

V. DISCUSSION

One of the main obstacles we faced while implementing the
gabor filter specifically was the CPU time. Because θ dynami-
cally changed with each pixel, the filter had to be computed each
time. Moreover the Expectation-Maximization procedure takes
a lot of time to converge. With this significant overhead even
smaller images took a great deal of time to complete. We tested
on images under 400x400 pixels and most of the actual traffic
sign images were well over 1000 pixels in width. This is a scale
that we could not compute in a timely manner. One thing we
would like to do in the future is parallelize this in an effort to
process larger images.

On the other hand, MRF allows to take into account the
spatial information during the segmentation, producing smoother

Figure 3. The initial image of the traffic sign to segment.

Iteration Average Uniform Pixels
0 2869
1 2867
2 2857
3 2869
4 2867
5 2422
6 1765
7 1901
8 1890
9 1765

10 1745

Table I
MEASURES HOW MANY UNIFORM PIXELS EXIST WITHIN EACH OF THE 5

SEGMENTS ON AVERAGE.

Figure 4. The results of running img IV through our MRF implementation.

results and well defined contours which are essential in the sign
detection chain. Although unsupervised segmentation was an
attractive approach due to its robustness to change in illumina-
tion conditions, the high computation time makes this approach
unsuitable in a production system. In the future, we would like
to design a supervised MRF segmentation algorithm.
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